在线精品99_中国九九盗摄偷拍偷看_91免费版在线观看_91.app_91高清视频在线_99热最新网站

python中merge多对多匹配的问题怎么解决

108次阅读
没有评论

共计 776 个字符,预计需要花费 2 分钟才能阅读完成。

在 Python 中,可以使用 pandas 库的 merge() 函数来解决多对多匹配的问题。merge() 函数可以将两个或多个数据集按照指定的列(或索引)进行匹配,并将匹配的结果合并在一起。
下面是一个示例代码,演示如何使用 merge() 函数解决多对多匹配的问题:

import pandas as pd
# 创建两个数据集
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'key': ['K0', 'K1', 'K2', 'K3']})
df2 = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3'],
'key': ['K0', 'K1', 'K2', 'K3']})
# 使用 merge() 函数进行匹配
result = pd.merge(df1, df2, on='key')
print(result)

输出结果为:

A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K2  C2  D2
3  A3  B3  K3  C3  D3

在这个示例中,我们创建了两个数据集 df1 和 df2,并且都包含了一个列 key。然后使用 merge() 函数将这两个数据集按照 key 列进行匹配,得到了匹配结果 result。
需要注意的是,merge() 函数默认进行的是内连接(inner join),即只保留两个数据集中 key 列匹配的行。如果想要进行其他类型的连接,可以通过设置 how 参数来指定连接方式,如 how=’left’ 表示左连接,how=’right’ 表示右连接,how=’outer’ 表示外连接等。
除了使用 merge() 函数,也可以使用其他数据分析库中的对应函数来解决多对多匹配的问题,比如 SQLAlchemy 库的 join() 函数。

丸趣 TV 网 – 提供最优质的资源集合!

正文完
 
丸趣
版权声明:本站原创文章,由 丸趣 2023-12-21发表,共计776字。
转载说明:除特殊说明外本站除技术相关以外文章皆由网络搜集发布,转载请注明出处。
主站蜘蛛池模板: 精品99视频| 一区二区国产一区二区a4yy | 亚洲是图你懂的 | 久久久精品一区二区三区 | 在线观看欧洲成人免费视频 | 少妇被多人c夜夜爽爽av | 欧美成人r级在线播放 | 国产爆乳无码一区二区麻豆 | 久久se精品动漫一区二区三区 | 欧洲色网站 | 久久这里只有免费精品6www | 国产精品成熟老女人 | 激情内射亚洲一区二区三区 | 欧美一级片毛片免费观看视频 | 国产精品九九九久久九九 | 国产啪亚洲国产精品无码 | 好吊色欧美一区二区三区四区 | 欧美牲交a欧美牲交aⅴ免费下载 | 亚洲av无码专区在线播放中文 | 精品欧美在线精品 | 欧美日韩国产码高清 | 亚洲欧洲精品无码av | 欧美日韩中文亚洲v在线综合 | 一区二区三区久久精品 | 色综合久久88色综合天天 | 好吊色综合网天天高清 | 免费福利影院 | 亚洲精品久久久久午夜 | 久久久精品国产免费观看同学 | 日本一级毛片视频在线看 | 在线观看偷拍视频一区 | 日韩欧美中文字幕在线播放 | 在线观看毛片网站 | 久久综合网址 | 色偷偷888欧美精品久久久 | 真人与拘做受免费视频一 | 欧美v亚洲 | 日本一本高清 | 蜜桃视频在线观看免费网址入口 | 久草免费电影 | 亚洲国产精品久久电影欧美 |